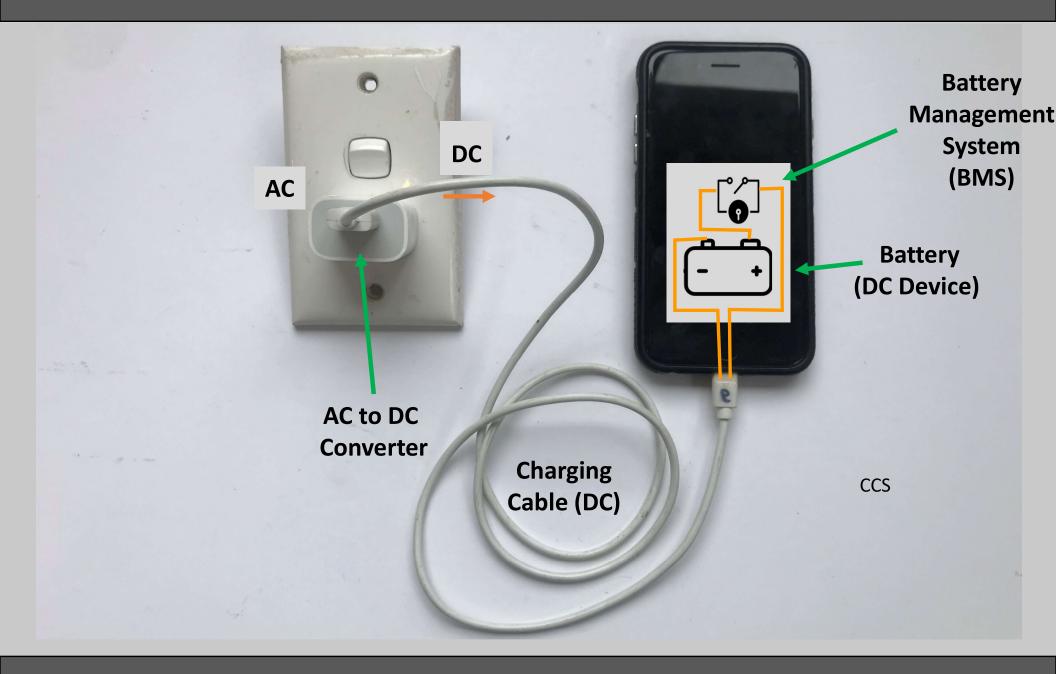
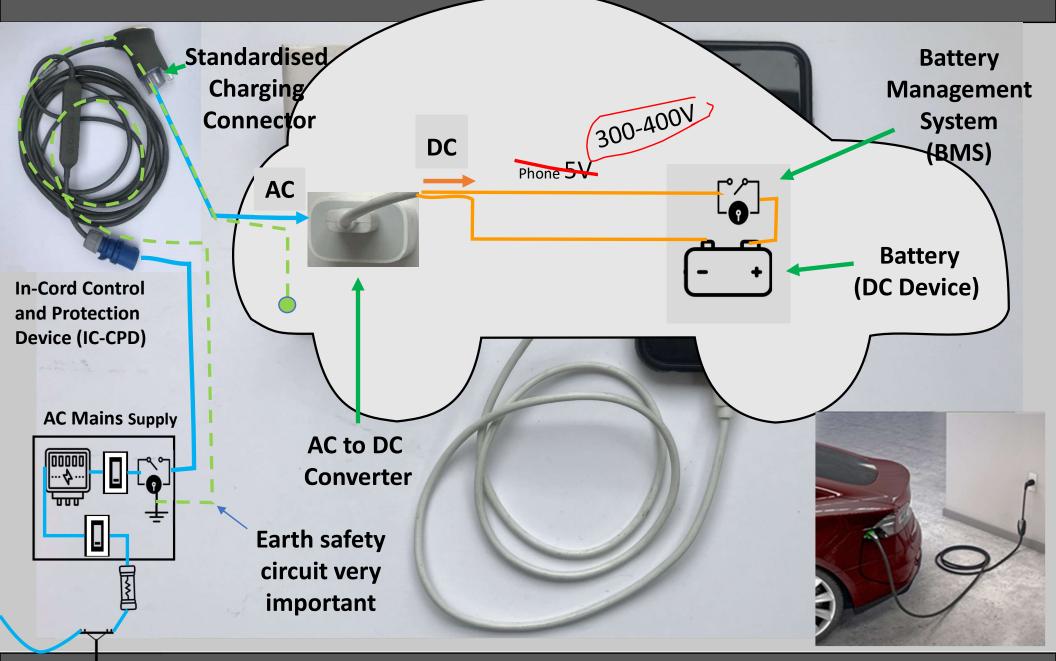

Guidelines for Electric Vehicle Charging Andrew Campbell 29 November 2022

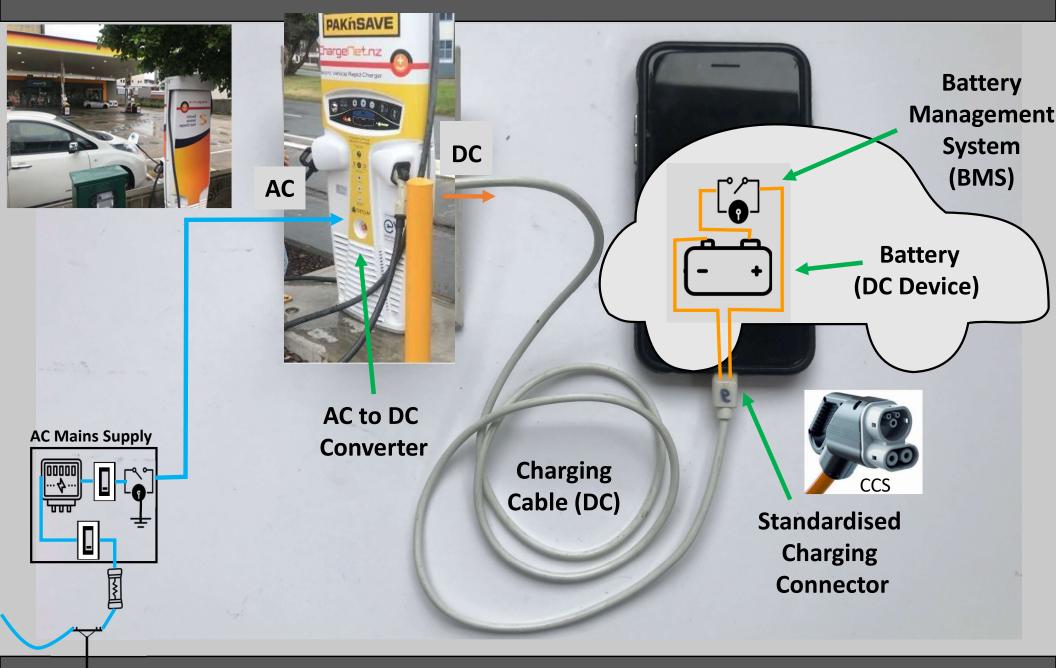
Time in Life Cycle	Electric Vehicles	Charging Infrastructure		icity to the g/Charger
Design	Standards, tech development, meeting market	Standards, compatibility, fit-tor- purpose		y supply system, planning
Build	Capacity, market demand by	Capacity, demand by different	Gen C	Co.s/Line Co.s
Supply	A Need Charging	Standards: mum requirements)		ines Co.s, general rmation on
Purchase (and resell)	exp • Interoperat	Dility (EV and charger) CE (spec for ordering vel	on	twork upgrade, type switching and country plans
Installation	Insurance, warranty, registration identification. WoF	Approval, site works, certification. industry training	Gen C	o.s/Lines Co.s
In-service operation	Need Guideli	nes:		
General use		nstallations and use)		ontrols (pricing and other).
Charging	 Under Faster to d 	CE (closest station deploy	.)	ν, time of charging, billing
Servicing/ maintenance	Un	or new technology		o.s/Lines Co.s
Breakdown	Guidelines/best practice	Response, industry training, map.	Gen C	o.s/Lines Co.s
Accident	1 st response, repair, fleet re-entry	1 st response, repair, re-cert.	Gen C	o.s/Lines Co.s
Retirement	Decision to, reuse of battery/electrics through scrap/recycle .	Decision to, re-use/upgrade through scrap	Gen C	o.s/Lines Co.s



and in neighbourhood


Charging basics ...

Conductive 'DC Charging'


Charging basics ...

Conductive 'AC Charging'

Charging basics ...

Conductive 'DC Charging'

IEC Standards refer to four charging modes

'Mode 1' AC Charging ...

e.g., Simple EV, Domestic Charging

- No pilot/checking system.
- May have little safety functions.
- Not recommended for HV charging.
- Not permitted in some countries.

'Mode 2' AC Charging ...

'At-Home' Slow Charging

In-Cord Control and Protection Device (IC-CPD):

- (Low voltage) pilot handshakes with EV and checks for faults before charging goes live.
- Regulates the charge rate.
 - 'Installation' by plugging into socket outlet ... requires electricity supply circuit to be safe.

Modes 3 and 4 ...

'Mode 3' AC Charging ...

At-Home, Work, and in Public Spaces

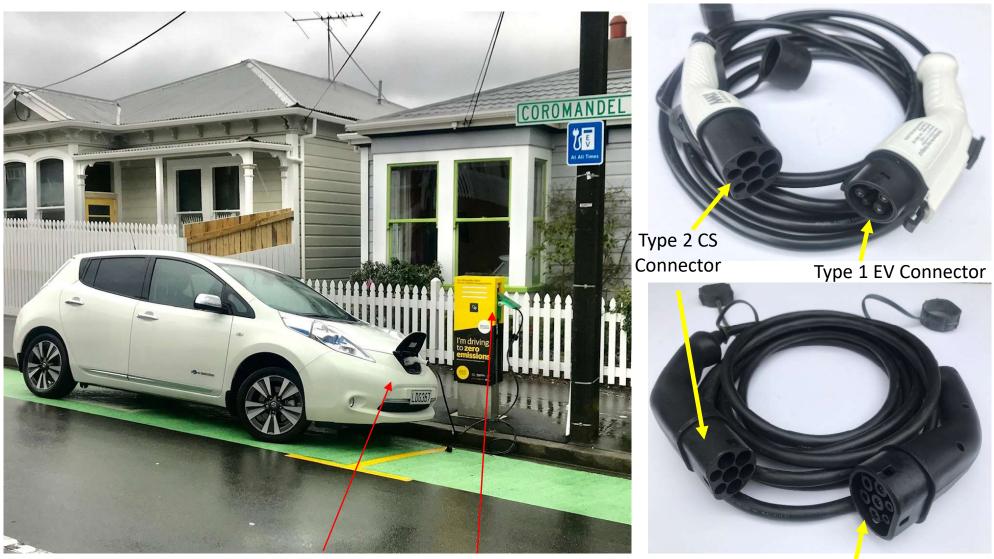
Pilot handshakes with EV and checks for electric faults before going live (as for Mode 2). Permanently wired to mains supply:

- Earth safety circuit more robust.
- Installed by a qualified electrician.

'Mode 4' AC Charging ...

Fast, Public Charging

- Pilot handshakes with EV and checks for electric faults before going live.
- Permanently wired.
- Tethered charging cable (water cooled for high kW).
- AC-to-DC converter off the vehicle \rightarrow larger and heavier \rightarrow faster charge rates.


Comparing the Four Charging Modes

Consideration	Mode 1	Mode 2	Mode 3	Mode 4	
AC or DC Charging	AC	AC	AC	DC	
Supply Wiring	Socket outlet	Socket Outlet	Permanent	Permanent	
Pilot Control	None	Yes	Yes	Yes	
Isolates on Detecting Residual Current	No	Yes	Yes	Yes	
Typical Charge Rate	1 <mark>.</mark> 2kW	1.2kW-3.6kW	2.4kW-11kW	30kW-350kW	
Time to add 100km range	7-15 hours	4-15 hours	2-7 hours	2-30 mins	
Recommended use	Not recommended	At-home only, not preferred.	Domestic, commercial and public charging.	Commercial and public charging.	
				Vest Charger	

Charging connectors ... important to guide use at public charging stations

Name	AC/DC	Rate	Vehicle
"Type 1" (SAE J1772)	AC	1-7kW	Japan, US origin, Some EU
European Mennekes "Type 2"	AC and DC	1-22kW AC BYD/Tesla up to 100-130kW	EU-sourced
c Preferr (tir char	mainly Japan origin		
Combo or CSS (Combined Charging System, Type 1 and 2)	AC and DC	50-350kW DC	EU-sourced
Tesla Super- charger	AC And DC	Up to 250kW	Tesla

AC Public Charging ... providing for different vehicle connectors

Portable cable with: Type 1 at EV and Type 2 at charger

Type 2 EV Connector

Charging connectors ... important to guide use at public charging stations

Name	AC/DC Rate		Vehicle
"Туре 1" (SAE J1772)	AC 1-7kW		Japan, US origin, Some EU
E Preferr M Char	EU-sourced		
CHAdeMo (time for tea)	DC	10-80kW (now up to 400kW DC)	mainly Japan origin
Combo or CSS (Combined Charging System, Type 1 and 2)	AC and DC	50-350kW DC	EU-sourced
Tesla Super- charger	AC And DC	Up to 250kW	Tesla

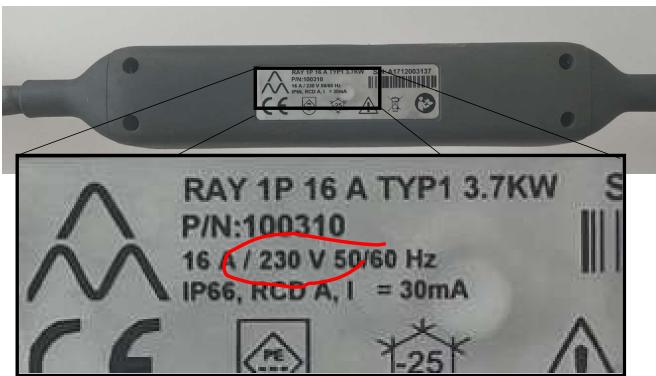
DC Public Charging ... providing for different vehicle connectors

CHAdeMO CCS Type 2 Type 2 (fast AC)

Charging at home ...

Common plugs used

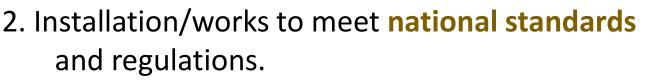
Is the electricity supply circuit safe?


- 4 hours charging very different to boiling a kettle for 2 minutes!
- → reduce charging rate over label rating.
- Earth circuit important for safety

		11	• • •		
	Type A	Туре В	Туре С	Type E	Type I
Rating of plug	15A	15A	5A	16A <mark>8</mark>	BA 10A
Fiji 240Vx50Hz					V
French Polynesia 220x60			V	V	
Kiribati 240Vx50Hz					V
Marshall Islands 120Vx60	V	V			
Nauru 240Vx50Hz					V
New Caledonia 220x50			v	V	
New Zealand 230/240x50					٧
Palau 120Vx60Hz	v	V			
Solomon Islands 220x50	+Type G				V
Tonga 240Vx50Hz					V
Tuvalu 220Vx50Hz					V
Vanuatu 220Vx50Hz					V
Wallis and Futuna 220x50				-1	
				V	

Most users start with using the portable charging cable that came with the EV

But is the charger compatible with the electricity supply circuit?



\rightarrow Electrical equipment must be used within its design specification

Recommendations, making charging safer and convenient ...

 Equipment built to recognised international standards (e.g., IEC).

- 3. Use RCD/GFFI protection on electric supply circuits used for charging.
- 4. Strongly **discourage Mode 1** charging.
- 5. Encourage female Type 2 (Mennekes) for pubic AC charging.
- 6. Encourage CHAdeMO and CCS Type 2 for DC public charging.

Type 2

Proposed next steps:

- 1. Template and supporting information on PCREEE's website.
- 2. Now requires country-specific calibration.
- 3. Country acceptance of (voluntary) guidelines.
- 4. Awareness raising (develop/provide infographics, webinars, other).
- 5. As required update of guidelines.

Thank you