

Government of Tonga / PCREEE / ISA / INES PFE

Online training « specificity of solar micro grids in island areas - November 2021

SESSION 3: How to select PV components adapted to the Pacific context?

- Costs distribution of a micro grid
- Key decision-making rule-of-thumb
 - → Choice of mounting structure
 - → Choice of photovoltaic modules
 - → Choice of inverter and regulator
 - → Choice of storage system
- Case-study : Request for proposal to Pitcairn Island
- Resilience and robustness of components in the light of the Pacific salty & windy context (see "Solar under storm recommendations" from Rocky Mountain Institute)

Costs distribution of a micro grid

The graph shows the costs distribution according to **six main components** of a solar / diesel micro-grid (one size around 40 kW).

- PV solar panels
- PV cables, charge controllers, DC / AC conversion
- Storage
- Distribution and meters
- Emergency diesel generator
- Other costs

Results of a survey carried out on 27 micro-grids (solar and hybrid) in Sub-Saharan Africa from 2013 to 2015.

Costs distribution of a micro grid

COSTS	Low	Medium	High	Lifetime
Installed PV costs (USD / kWp)	1400	1700	2000	20-25
Lead-acid battery costs (USD / KWh)	200	350	500	3-7
Lithium-Ion battery costs (USD / KWh)	400	800	1200	8-15
Inverter & charge controller costs (USD / KWh)	600	900	1200	8-12
Operations & maintenance costs (USD)	2% of capital expenditure for PV panels and inverters			/
Discount rate (%)	8	10	12	/

Key decision-making rule-of-thumb / Norm & choice of mounting structure

General characteristics for PV installation fixed on the roof: (steel or fiber cement deck)

<u>Rider</u>

+ light solution fixed with opposing screws- fixed only on the steel deck

2 waves of the steel deck - fixed only on the steel deck

Long rail

+ very stable solution fixed to the frame with hanger bolts- slower solution to implement

Need to check if the **building can support the weight of the PV installation** and if the manufacturer of the fixing solution **guaranteed to withstand local winds** !!!

Key decision-making rule-of-thumb / Norm & choice of mounting structure

General characteristics for PV installation fixed to the ground:

Box weighted with earth or stone

+ local ballast materials
 - not very aesthetic

Ciment foundation

+ very stable solution

- requires delivery of cement

Metal pillar sunk into the ground

+ relatively simple dismantling and almost no impact on the environment
- requiring specific machines

Screw pile

Pile to strike

Key decision-making rule-of-thumb / Norm & choice of mounting structure

General characteristics for PV tracker solution:

But the investment is more substantial (around 20% to 30%) and requires serious maintenance

Need to calculate the **spacings between the trackers to avoid shading** and check that the manufacturer of the fixing solution **guarantees resistance to local winds** (with ballast calculation and **automatic management** of the return to the **safety position** in the event of a storm) !!!

Key decision-making rule-of-thumb / Norm & choice of mounting structure

General characteristics for floating PV installation:

Need to take into account the **water level evolution** according to the seasons and to make a precise **study of the anchor points** on the banks !!!

Key decision-making rule-of-thumb / Norm & choice of mounting structure

General characteristics for agrivoltaic:

Need to make a study of the **agricultural constraints** and check that the manufacturer of the fixing solution **guarantees resistance to local winds** (with ballast calculation) !!!

Key decision-making rule-of-thumb / Norm & choice of mounting structure

Cyclones / Typhoon / Hurricane period:

Key decision-making rule-of-thumb / Norm & choice of mounting structure

Classification scale for the tropical cyclones intensity (Saffir-Simpson scale)

Category	Wind Speed (mph)	Damage at Landfall	Storm Surge (feet)	
1	74-95 119 - 153 km/h	Minimal	4-5 1,2 - 1,5 m	
2	96-110 154 - 177 km/h	Moderate	6-8 1,8 – 2,4 m	
3	111-130 178 - 210 km/h	Extensive	9-12 2,7-3,7 m	
4	131-155 211 - 251 km/h	Extreme	13-18 4 - 5,5 m	
5	> 155 more than 251km/h	Catastrophic	19+ more than 5,5 m	

Ouragan Noel (2007)

Ouragan Irene (2011)

Key decision-making rule-of-thumb / Norm & choice of PV modules

General characteristics of PV modules:

- ⇒ **Type of technology** (amorphous, polycrystaline, mono-crystalline, heterojunction, bi-facial, half-cell ...)
- \Rightarrow Efficiency (>18%) and electrical characteristics (Wp, Voc, Vmpp, Isc, Impp)
- \Rightarrow Sensitivity to different types of solar radiation (direct, diffuse, albedo)
- ⇒ Thermal coefficient (Power-Voltage-Current / Temp.)
- ⇒ Resistance to climatic conditions (Panel Front Load > 6,000 Pa, Panel Rear Load > 5,400 Pa)
- ⇒ Connector type (Staübli-Multiconact, Sunclic, Tyco, Amphenol, Hirschmann, ...)
- \Rightarrow Number of bypass diodes (minimum 3 if 60 whole cells)
- \Rightarrow **Protection class** (class II)

Key decision-making rule-of-thumb / Norm & choice of PV modules

Best PV cells technology and their efficiency:

MBB = Multi-Bus-Bar (Wire)

IBC = Interdigitated Back Contact

PERC = Passivated Emitter and Rear Cell

SHINGLE = Shingle solar cells are solar cells which are cut into typically 5 or 6 strips

BSC = Bifacial Solar Cell is a photovoltaic solar cell that can produce electrical energy when illuminated on both its surfaces

NTYPE = N-Type tends is a better choice due to reducing LID (Light Induced Degradation) & increase durability and performance compared to p-type

Key decision-making rule-of-thumb / Norm & choice of PV modules

IEC 61215	Crystalline PV modules testing (Design Quality, tested suction load (Ex. 2400 Pa) and overload (Ex 5400 Pa))
IEC 61646	Testing of thin film PV modules (Manufacturing quality)
IEC 61701	Salt mist corrosion test
IEC 61730	Qualification for operational safety (application class, protection class II)

Key decision-making rule-of-thumb / Norm & choice of PV inverters

Fronko

General characteristics of PV inverters:

- \Rightarrow Wide input voltage range and MPPT range (ex: 150 to 600 V)
- \Rightarrow Maximum power point search quality and accuracy (MPPT) with one or more MPPT
- \Rightarrow Maximum power limitation by mismatching Pmax
- \Rightarrow Overvoltage protection (varistors)
- \Rightarrow Protection of people (DC insulation control)
- \Rightarrow With or without transformer (TL: transformerless)
- \Rightarrow High efficiency at the usual power level of the installation (ex: 92% to 98.5%)
- \Rightarrow Low consumption & noise level
- \Rightarrow Low electromagnetic disturbances & harmonic levels

Key decision-making rule-of-thumb / Norm & choice of PV inverters

- \Rightarrow Display of the operating parameters (indicator lights, displays, etc.)
- \Rightarrow Data recording (accessible by computer link)
- \Rightarrow Good reliability, extended and extendable warranty period
- \Rightarrow Degree of protection (eg IP65)
- \Rightarrow Load management and storage management
- \Rightarrow Electricity network management (active power regulation, reactive power supply)
- \Rightarrow Perfect synchronization with the network and zero or low phase shift (power factor = 1)
- \Rightarrow Automatic network decoupling (<20 ms) if out of tolerance

Key decision-making rule-of-thumb / Norm & choice of PV inverters

IEC 62109-1 / 2	Safety of energy converters for use in PV systems		
IEC 62116	Interconnected PV inverters - test procedure for prevention of islanding		
IEC 61727 VDE 0126-1-1	Electrical network interface Decoupling protection		
IEC 61000-3-2	Harmonies		
PV Source	Decoupling Interleaved DCM Full-bridge capacitor flyback converter unfolding inverter CB - Switch $\downarrow \downarrow $		

Key decision-making rule-of-thumb / Norm & choice of PV regulators

General characteristics of regulators:

\Rightarrow Type of regulator:

- Classic regulator (connects the modules to the battery)
- MPPT regulator (converts voltage from generator to battery)

\Rightarrow Different internal functioning:

- Shunt regulator (most used technology) -
- Regulator Series -

\Rightarrow Different current regulations:

- All or nothing regulation (old, low cost)
- PWM regulator (more precise current management)-

\Rightarrow Different commands:

- Regulation by voltage threshold
- Software regulation, self-learning "fuzzy logic" concept

\Rightarrow Very useful additional functions:

- Battery status indicator (with optional separate voltage measurement), Thermal compensation, Timed load shedding
- Adjustable cut-off thresholds (charge and discharge), Data logging with shunt

SERIES regulator Current regulation by open circuiting of the module

Key decision-making rule-of-thumb / Norm & Choice of Storage system

Ex: Flvwheel

Ex: Super-Capacitor for reactive energy compensation

Ex: STEP Pumping-Turbining Energy Transfer Station

Ex: Hydrogen fuel cell

Ex: Latent heat

Ex: Energy Storage compressed air

Key decision-making rule-of-thumb / Norm & choice of storage system

Need to choose the right battery according to its power & energy needs and its field of application !

Key decision-making rule-of-thumb / Norm & choice of storage system

Key decision-making rule-of-thumb / Norm & choice of storage system

Electro-chemical storage

Specificity of solar micro grids in island areas Key decision-making rule-of-thumb / Norm & choice of storage system **OPzS** Lead acid **Opened battery (with maintenance)** Flooded/tubular-plate/stationary Good value for money. (Liquid electrolyte + cap for filling) AGM: Absorbed Glass Mat wide range of capacities (frozen electrolyte) Heavy and bulky, contain lead / acid Sealed battery (without maintenance) Stationary applications GEL (VRLA: Valve Regulated Lead Acid) 40 Wh / kg & \ge 200 USD / kWh **OPzV** (aelled electrolyte) Sealed/tubular-plate/stationary **Nickel Cadmium** Nickel Metal Hydrid Low toxicity and recyclable Flexible in its use by rapid charges Accepts extreme temperatures High power applications required Has a high discharge current Accepts extreme temperatures Sensitive at the end of charging requiring a specific charger Good resistance to deep discharges Self-discharge is quite important (30% / month) Cadmium toxic compound 80 Wh / kg & \geq 350 USD / kWh FP

60 Wh / kg & ≥300 USD / kWh

Lithium Ion

Mobile application and good lifespan High power applications required Implementation is guite tricky in charging and discharging High cost for off-grid energy applications 150 Wh / kg & \geq 400 USD / kWh

Online training « specificity of solar micro grids in island areas - November 2021

Lithium Iron Phosphate

Key decision-making rule-of-thumb / Norm & choice of storage system

Zinc-Air Battery (Zn-Air)

High specific energy Abundant and low cost materials & Recyclability Industrial scale up to be proven Low efficiency & Low cyclability 225 Wh / kg & \geq 350 USD / kWh

Sodium Battery (VRB vanadium, Zn-Br2)

Good energy density Abundant and inexpensive materials, High temperature (thermal losses to be compensated) Danger of liquid sodium 125 Wh / kg & \geq 450 USD / kWh

Redox Battery (Na-S, Zebra NaNiCl2)

Possibility of decoupling energy and power 100% of the capacity can be used, High costs Complex system (auxiliaries) Self-discharge 40 Wh / kg & \geq 500 USD / kWh

Redflow Zn-Br₂ system (300 kW / 660 kWh; container de 20 feet, 25 t)

Case-study : Pitcairn Islands

Request for proposal / Supply, install and local training for the Solar PV Hybrid System of Pitcairn Islands (Page 5 & 6)

Evalu	ation (Criteria, Competency Requirements	Score Weight (%)	Points Obtainable
(1) Adherence a compliance with components		a) Monocrystalline Solar Module, Rated power 450Wp or higher and module efficiency 20 % or higher	10	70
specifications, standards and		b) Valve Regulated Lead Acid Battery	10	70
warranty requirements		c) Energy Management System and Balance of System	10	70
		d) Distribution line upgrade	10	70
(2) Design Adeq and Project	uacy	 a) Adequacy of proposed system design and configuration 	10	70
Experiences as t main contractor hybrid systems f minigrid applica – solar and ener storage - of comparable scal the proposed contract	in RE for tions gy	b) Proven experience as the main contractor in the deployment of grid-connected solar PV systems and RE hybrid systems for minigrid applications – solar and energy storage of comparable scale to the proposed contract	10	70

(3) Adequacy of proposed implementation plan,	a) Relevant training program of local stakeholders to ensure overall system sustainability	10	70
timeline and training plan	 b) Adequacy of proposed implementation plan and timeline 	5	35
(4) Ability to provide Service Center to	a) Guarantee period for System performance, Components and equipment	10	70
cater to repair and troubleshooting services after handover	b) Adequacy of proposed maintenance and support services agreement	5	35
(5) Personnel qualifications- Compliance with the required expertise and skill sets according to TOR of key personnel dedicated for the project			70
	Total score	100%	700
	Qualification score	70%	490

Case-study : Pitcairn Islands

Request for proposal / Supply, install and local training for the Solar PV Hybrid System of Pitcairn Islands (Page 19)

The mounting structure should meet the following specification and requirement:

 \Rightarrow Material of mounting structure: Hot deep galvanized steel \Rightarrow Wind load requirement: 40 meter per second (150km/h)

The solar PV module should meet the following specification and requirement:

- \Rightarrow The total capacity of solar PV array: minimum 134kWp
- \Rightarrow Minimum Performance at Standard Test Condition(STC) of PV module (1000W/m₂, 25±2°C, AM 1.5)
- \Rightarrow Nominal power of solar PV module at MPP(Maximum Power Point) : minimum 450Wp
- ⇒ Efficiency of solar PV module: minimum 20% (Monocrystalline)
- \Rightarrow Annual performance degradation: 0.6% each year.
- \Rightarrow Module performance warranty: minimum 92.6% of the nominal power upto 10 years and minimum 83.6% upto 25 years

Case-study : Pitcairn Islands

Request for proposal / Supply, install and local training for the Solar PV Hybrid System of Pitcairn Islands (Page 19)

The battery storage should meet the following specification and requirement:

- \Rightarrow Nominal capacity of battery storage: minimum 1,594kWh
- \Rightarrow Nominal battery voltage: <u>300V</u>
- \Rightarrow Type of battery storage: <u>VRLA(Valve Regulated Lead Acid)</u>, maintenance-free type
- \Rightarrow Cycling performance: 2,400 cycles or higher at 60% depth of discharge at 20 degree Celsius
- => Battery shall be packed in metal rack

The battery charger:

- \Rightarrow Max. Efficiency : > 90 % , Stand-by loss : < 3% & Acoustic noise < 65 dBA
- \Rightarrow Electrical input: 3 phase, 400V±10%, 50/60Hz & Electrical output: 100kW, 250-350Vdc, overload 125%/10min
- \Rightarrow Charging function: CC & CV mode, Floating , Absorption & Equalizing charging

Case-study : Pitcairn Islands

Request for proposal / Supply, install and local training for the Solar PV Hybrid System of Pitcairn Islands (Page 19)

DC/DC Converter for PV:

 \Rightarrow <u>MPPT</u> control of PV array, floating charging & Output power limiting at the full state of charge (SOC) \Rightarrow Electrical input: 300~450Vdc & Electrical output: 40kW, 270-350Vdc

CVCF Inverter (UPS):

⇒ Max. Efficiency : > 90 % and Stand-by loss : < 3%, Acoustic noise < 65 dBA
 ⇒ Electrical input: 250~450Vdc & Electrical output: 3 phase, 150 kVA, 400/230Vac, 50±0.1Hz, Overload : 125%/10min, 150%/30sec

Resilience and robustness of components in the light of the Pacific salty & windy context

Photo courtesy NASA Earth Observatory

Photo by Kenneth Wilsey for FEMA - Humacao, Puerto Rico, Jan. 25, 2018

Photo by Kenneth Wilsey – Feb 13, 2018 Guaynabo, Puerto Rico

SOLAR UNDER STORM (from ROCKY MOUNTAIN INSTITUTE) SELECT BEST PRACTICES FOR RESILIENT GROUND-MOUNT PV SYSTEMS WITH HURRICANE EXPOSURE BY CHRISTOPHER BURGESS AND JOSEPH GOODMAN

Resilience and robustness of components in the light of the Pacific salty & windy context

RECOMMENDATIONS FOR BUILDING MORE RESILIENT SOLAR PV POWER PLANTS (specifications in "Solar Unter Storm" from Rocky Mountain Institut):

⇒Require high-load PV modules (up to 5,400 Pa uplift) , based on structural calculations

- ⇒Require structural engineering in accordance with norms and site conditions (wind forces), and attachment design (ground-mount foundation).
- Require to confirm with manufacturer that actual site conditions are in accordance with their base condition assumptions from wind-tunnel testing.
- ⇒Require very good manufacturer quality of the supporting structure fixing bolts (Quality Assurance and Quality Control process).
- ⇒Require a good implementation of the supporting structure fixing and a bolt hardware locking solution.
- ⇒Provide fixing of the modules with a bolt passing through the frame of the module. Otherwise, only require T-Clamps if they hold the modules individually or independently.

INTERNATIONAL SOLAR ALLIANCE

Specificity of solar micro grids in island areas

Resilience and robustness of components in the light of the Pacific salty & windy context

RECOMMENDATIONS FOR BUILDING MORE RESILIENT SOLAR PV POWER PLANTS (specifications in "Solar Unter Storm" from Rocky Mountain Institut):

- ⇒Require structural engineering in accordance with the lateral solicitations on the supporting structures and on the electrical boxes (exposed to strong winds)
- \Rightarrow **Require dual post fixed tilt ground mounts**, which significantly reduce foundation failure risk.
- ⇒Do not recommend trackers for projects in Category 4 or higher wind zones.
- => Require all hardware be sized based on 25 years (or project life) of corrosion.

=> Do not recommend any self-tapping screws.

Resilience and robustness of components in the light of the Pacific salty & windy context

RECOMMENDATIONS FOR BUILDING MORE RESILIENT SOLAR PV POWER PLANTS:

 \Rightarrow Require the right choice of materials to limit fixing frame oxidation: prefer aluminum, highly galvanized steel, 316 stainless steel!

Resilience and robustness of components in the light of the Pacific salty & windy context

RECOMMENDATIONS FOR BUILDING MORE RESILIENT SOLAR PV POWER PLANTS:

 \Rightarrow Require the right choice of materials to limit oxidation from equipotential bonds: pay attention to the electrolytic couple !

classic washer

Resilience and robustness of components in the light of the Pacific salty & windy context

RECOMMENDATIONS FOR BUILDING MORE RESILIENT SOLAR PV POWER PLANTS:

 \Rightarrow Make sure that the installation teams will respect the manufacturer's recommendations

Resilience and robustness of components in the light of the Pacific salty & windy context

RECOMMENDATIONS FOR BUILDING MORE RESILIENT SOLAR PV POWER PLANTS:

 \Rightarrow Make sure that the products chosen correspond to the climatic conditions of the site

Low resistance "C" or "I" type profile !!!

Bolts not strong enough !!!

In cyclonic areas: tubular structures and triangular reinforcements are recommended on all axes

Resilience and robustness of components in the light of the Pacific salty & windy context

RECOMMENDATIONS FOR BUILDING MORE RESILIENT SOLAR PV POWER PLANTS:

 \Rightarrow Make sure that the products chosen correspond to the climatic conditions of the site

In cyclonic areas: it is recommended to surround the PV installation with a mesh fence (in addition to the anti-theft protection, it is a good way to attenuate turbulence and to stop flying objects)

Resilience and robustness of components in the light of the Pacific salty & windy context

BEST PRACTICES:

 \Rightarrow Know very well the site of a micro-grid project (make a study of the ground and of local climatic conditions)

Always obtain a validation from manufacturers of PV modules and fixing structures that their systems are perfectly designed to all the constraints of the site (wind category, aggression of UV solar radiation and salty atmosphere)

⇒ Check that the installation teams will apply all the manufacturers installation recommandations (compliance with electrical and mechanical assembly plans, tightening torques and locked fixings)

SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

Specificity of solar micro grids in island areas

THANK YOU FOR YOUR ATTENTION

Olivier VERDEIL - Solar Photovoltaic Expert and Trainer at INES Online Training – November 2021 Olivier.verdeil@ines-solaire.org